

Laurea Magistrale Atmospheric Science and Technology (LMAST)

SUBJECT TITLE	Statistical Mechanics
TEACHER NAME(S)	Simone Paganelli, Guglielmo Lacorata
Teacher e-mail (s)	Simone.Paganelli@aquila.infn.it, Guglielmo.Lacorata@cnr.it
Teacher phone	0862 433059 (S.P.), 06 45488309 (G.L.)
Teacher meeting	Contact the teachers
Teacher office address	Univ. dell'Aquila, DSFC Via Vetoio, 67010 L'Aquila
DISCIPLINE (SSD)	FIS/02 – Theoretical Physics
Semester (1-4) and location	1 (first), Rome, Via Eudossiana 18 (S. Peter in chain site)
Credits (CFU/ECTS)	6
Lecture hours (h)	60
Prerequisite and learning activity	Classical Mechanics, Probability
Teaching language and method	English & lectures, exercises and homework
Assessment method	Oral examination
SUBJECT WEBSITE	N/A

OBJECTIVES

Understanding the basic concepts of:

- -Statistical Mechanics
- -Stochastic Processes
- -Probability
- -Non Linear dynamics

OUTCOMES (Dublin descriptors: knowledge, understanding, explain, skill, ability)

- After the successful completion of this module, the student should be able to:
- -know the fundamentals of Statistical Mechanics;
- -know the concept of probability and distribution function;
- -analyse the characteristics of stochastic and deterministic models;
- -know the concept of forecast error and predictability of the future state of a system.

PROGRAM CONTENT

INTRODUCTION TO STATISTICAL MECHANICS: Basic assumptions. Statistical ensembles. Equilibrium properties. PROBABILITY: Probability distribution functions. Concept of Entropy.

STOCHASTIC PROCESSES. Markov chains. Fokker-Planck equation. Stochastic differential equations. DYNAMICAL SYSTEMS: Conservative and dissipative systems. Nonlinearity and chaos. Diffusion and Mixing.

TURBULENCE: Phenomenology. Notions of Kolmogorov's K41 theory. Overview of 2D and 3D turbulence.

REFERENCES AND MATERIAL

- -G. Boffetta e A. Vulpiani Probabilità in Fisica (Springer- Verlag Italia, 2012).
- -U. Frisch Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995).
- -E. Ott Chaos in dynamical systems (Cambridge Univ. Press, 2002).
- -N.G. van Kampen Stochastic processes in physics and chemistry (North-Holland, 1992).
- -Class notes provided by the Teachers