

Laurea Magistrale Atmospheric Science and Technology (LMAST)

SUBJECT TITLE	Satellite geodesy and geomatics
TEACHER NAME(S)	Maria A. Marsella (6 CFU)
Teacher e-mail (s)	Maria.marsella@uniroma1.it
Teacher phone	+39 06 44585098
Teacher meeting	Wednesday h10-11
Teacher office address	Via Eudossiana 18, 00184, Roma – D-Building
DISCIPLINE (SSD)	ICAR-06 - Geomatics
Semester (1-4)	2 - Rome
Credits (CFU/ECTS)	60
Lecture hours (h)	60 (45 lectures + 15 exercise/laboratory)
Prerequisite and learning activity	Physics, algebra, statistics
Teaching language and method	English – Lectures, exercises and lab works
Assessment method	Discussion on a project work
SUBJECT WEBSITE	https://corsidilaurea.uniroma1.it/it/node/2195940

OBJECTIVES

- provide a general background on satellite missions for measuring and mapping environmental and land parameters
- understand the main aspects for extracting georeferenced data and evaluating their spatial accuracy
- examine different EO data useful for positioning and mapping atmospheric and geophysical parameters
- experiment data processing techniques using tutorial datasets

OUTCOMES (Dublin descriptors: knowledge, understanding, explain, skill, ability)

- know the methods for georeferencing and mapping earth parameters derived from satellite observation
- address the main applications of remote sensing in geomatics, civil and environmental engineering
- understand the user requirements for monitoring services based on Earth observation data
- deal with multi-source geospatial data integration to implement GIS tools
- exploit remote sensing products and the processing chains for extracting maps and georeferenced parameters
- experiment data processing techniques to perform image georeferencing and extract geo-databases

PROGRAM CONTENT

REFERENCE COORDINATE AND TIME SYSTEMS - Cartesian Coordinate Systems and Coordinate Transformations - Reference Frames - Conventional Inertial Systems - Reference Systems in the Gravity Field of Earth - Ellipsoidal Reference Coordinate Systems - Ellipsoid, Geoid and Geodetic Datum - World Geodetic System (WGS84) - Sidereal Time and Universal Time - Atomic Time - Ephemeris, Dynamical and Terrestrial Time - Clocks and Frequency

OBSERVATIONS - Observables and Basic Concepts - Fundamentals of Wave Propagation - Determination of Directions, Ranges, Range Differences (Doppler method) - Interferometric Measurements - Optical Observations and Spatial Triangulation - CCD Observations - Weather satellite instruments - Multi-spectral imagers - UV and X-ray irradiance sensors - magnetometers - In- situ validation - Error Budget and Corrections -

ATMOSPHERIC MODELLING - Structure of the Atmosphere - Signal Propagation through the Ionosphere and the Troposphere - Ionospheric Refraction - Earth Rotation and Relativistic Effects
GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS) - Signal structure - Observables and Data Processing - Parameter Estimation - Ambiguities and Cycle Slips - Error Budget and Corrections - Ionospheric Effects - Tropospheric Propagation - Differential GPS and Permanent Reference Networks - Real Time Kinematic GPS - Multiple Reference Stations - Wide Area Differential GPS - Network Design

LASER RANGING - Systems and Components - Corrections, Data Processing and Accuracy - Parameter Estimation - Earth Gravity Field, Precise Orbit Determination (POD) - Positions and Position Change, Earth Rotation, Polar Motion

SATELLITE ALTIMETRY Measurements, Corrections, Accuracy - Geometry of Altimeter Observations - Data Generation - Corrections and Error Budget - Determination of the Mean Sea Surface - Applications of Satellite Altimetry - Geoid and Gravity Field Determination - Geophysical Interpretation - Oceanography and Glaciology **VERY LONG BASELINE INTERFEROMETRY** - Basic Concept, Observation Equations, and Error Budget - Applications - International Cooperation, International VLBI Service (IVS)

INTERFEROMETRIC SYNTHETIC APERTURE RADAR (INSAR) Basic Concepts, Synthetic Aperture Radar (SAR) - atmospheric effects on signal propagation - Amplitudes and Coherence maps and Differential Radar Interferometry

REFERENCES AND MATERIAL

- Texts and slides provided by the teachers and available on the course web site.
- Wolfgang Torge Geodesy Walter de Gruyter (ISBN13: 9783110124088)

Laurea Magistrale Atmospheric Science and Technology (LMAST)

